
RD-Ri20 788 A SIMPLE NATURAL NOTATION FOR APPLICATIVE LRNOUAGES(U) i/i
NAVAL POSTGRADUATE SCHOOL MONTEREY CA B J MACLENNAN
SEP 82 NPS52-82-809

UNCLASSIFIED F/G 912 N

EhhhomhomhosiE

4 .- . . _,. - -.. *.*..
"

1.0 In Laeo I"

liii I.OiIUI I
E I L

MICROCOPY RESOLUTION TEST CHART o AT)OONAh BUREAU OF $'TANOAROS-1963-A

NATIONAL BUREAU OF STANDARDS-1963-A I[

1 '-.--i-.J

MIROOP Q2OUTO VATCAR

ILa Il

1.2 11.

IL- 1.41.4

RMICROCOPY RESOLUTION TEST CHART

NAINLBRA OF STDRS16 -ANTOA UEUO SADRS16-

III1. We_ W . ~1

1.. "2 1.4 _L

MICRCOPYRESLUTIN TST CARTMICROCOPY RESOLUTION TEST CHART
~~~~~~~~~~NATIONAL BUJREAU OF STANDARDS-1963-A INTOA UEUO T~lCI6.

,j IL L2-

W/



o NPS52-82-009

NAVAL POSTGRADUATE SCHOOL
C Monterey, California
',,4

A SIMPLE, NATURAL NOTATION FOR APPLICATIVE LANGUAGES

Bruce J. MacLennan

September 1982

* Approved for public release; distribution unlimited* LJJ

Chief of Naval Research
Arlington, Virginia 22217

I r -.• .- 12



I43JVDSBHj AO U20a sousoS joindwoo 4~o juan~jvdao

:AKq pos1SLSaI :,q pOMLASO

aouspS joindwio3

:(Kq paids.d svp zida spj

-P8ZP44nfl S ZiOdSa stO jo jivd jo ILV 40 uopnpodaj

-4*JVSSq IUAVN
PRO 0I4 4~ Aq POPI.AoAd SPun; 4UM L00I43S Oa3flPVJ5ZSOd LIAVN a4l 4OILBOA

i4JVOSG uotZVPUno, 044 Aq lptd ut. pe;poddns SUM UtaJ94 pe~jodej i9Jom qj

4SOAOAd .uspus~updnS
J(PUJ40S V a0 PUNLS9I3 * T LtqtWV JEUN

1jtUJOJ4[U3 %1(aJGZUOW
1OHS 3JYVVV1SOd IVAYN



_7 *

UNCLASSIFIED
ECRTV CLASSIFICATION OF THIS PAGE Din-e EMew. ________________

REPORT DOCUMATION PAGE DosP sm m row
I- WOMPT NURSER GoACCESSION NO. 11ECIP411EN1-1 CATALOG MUNGER

NPS52-82-009 A //O7C _________

1 4. TITLEem OW Al0) S. TYPE OF REPORT a P91110 COVaiREC

* Languages

T. AUTNO) 11. CONTRACT ORN GRANT NU1M§91r4
Bruce J. MacLennan

S. PENO-000G OOMANIZATION NAME9 AND A001RE11 10. PROGA LEM.PREC.AS

Naval Postgraduate School 6a1 6A2N: O OO aW-O1--l0
Monterey, CA 93940 NO001482WR20043,

It. CONMTROLLsNG OPFI69 MNIE AND ADDRESNS 1a. REPORT DATE
Naval Postgraduate School September 1982
Monterey, CA 93940 IS. NUM89EROF PAGES

14, MONITORING AGENCY N AE & AOrESS(I EsiIfmck Cawuefllm OR*b) 111. SECURITY CLASS. (of s. reewQ

Chief of Naval Research
Arlington, Virginia 22217 UNLSSEE

I CN& D L C9 UN RA NN

IS. STMOUTItN STATEMENT (W1 I@ Rep..) 7 1T7o

Approved for public release; distribution unlimited

IF. WISTRIUUTION STATEMENT (of Me .aeib 61H 8 o A* S2. It Wiferm 9 m ReeWO

II. SUPOLEMENTARY NOTESU

Notation, Applicative Languages, Functional Programing, Relational
Programming, Logic Programmting, PROLOG, Relational Databases, LISP.

non-Spec a~ MeUI'T at he~ mati cal appearance of most
licative, functional, and very-high-level languages. This report presentsa

impi e notation that has an uni atimi dating, natural -language appearance and thaanbe adapted to a variety of languages. The paper demonstrates its use as an
I ternate syntax for LISP, PROLOG, Backus' FP, relational programming,, and rela
i onal database retrievals. The g mr's eight productions can be handled byimle reusv-descent parser.

DD W 43 sel*"' or I mvo e~~ UNCLASSIFIED
S/N 0102- LP@ 14- 6601 muY manas .m a m U



* A SIMPLE, NATURAL NOTATION FOR APPLICATIVE LANGUAGES*
.4,.

B. J. MacLennan

Computer Science Department

4.i Naval Postgraduate School

Monterey, CA 93940

1. Introduction

Many non-specialists are intimidated by the mathematical appear-

ance of most applicative and very-high-level languages.

Mathematical notations have distinct manipulative advantages,

some of which I have discussed in MacLennan (1979). Unfor-

4" tunately the widespread use of advanced languages may be limited

by their excessive use of mathematical notations. This paper

presents a simple notation that has an unintimidating, natural-

language appearance and that can be adapted to a variety of

languages.

.1 -I must stress that I am not suggesting that this notation

constitutes natural language programming. This notation is very

far indeed from being even a subset of English, or any other

natural language. However, the reader will see that with a

proper choice of vocabulary the notation can be quite readable.

I must also stress that this notation is not in itself a

F programing language. It is more accurate to describe it as a

.. ~*Work described in this report was supported in part by the
Office of Naval Research under contract number NOOO14-82-WR-
20162.

- 1 -



syntactic framework that can be adapted to a number of specific

contexts by a proper choice of vocabulary. The figures in this

paper demonstrate its use as an alternate syntax for LISP, logic

programing, functional programming, relational programming, and

relational database operations.

2. Syntax

A natural, readable notation results from combining non-symbolic

operator names with a right-associative infix syntax, and comma

and colon rules that suppress many parentheses. Of course, some

of the manipulative advantages of a mathematical notation are

lost.

Briefly, the syntax is as follows: All identifiers are

*divided into three classes: niladic (x, y, z, in the following

examples), monadic (f, g), and dyadic (p, q, r). Monadic appli-

cations, whether functions or predicates, are written "f x", "f g

x", etc. These associate to the right,. hence "f g x" means "f(g

x)". Dyadic applications, whether functions or relations, are

written with a right-associative, infix syntax. That is, "x p y

q z" means "x p (y q z)". Monadic applications are more binding

than dyadic applications; hence, "f x p g y" means "(f x) p (g

y)". Operations that accept more than two operands are expressed

by using a list building (or argument combining) operation. For

example, if the operation "y with z" produces the pair (y,z),

then the triadic operation p can be applied by "x p y with z".

L -2-



, ; T ; . T. ' ., ** .*. . .*.r' -.. .'." -,. * . 4 . ' ,. . 4 . .* '. '. - -. . ' .

7. .4-ul .7- a *t A.

Commas and colons can be used to eliminate many parentheses.

A comma is equivalent to a right parenthesis. The corresponding

A left parenthesis is at the nearest preceding colon, or at the

beginning of the expression, if there is no preceding colon.

Hence, "x p y, q z" means "(X P Y) q z" and "x p: y q z, r w"

means "x p (y q z) r w", which by right-associativity means "x p

((y q z) r w)".

Since the parsing of expressions is determined by the clas-

sification of identifiers into niladic, monadic, and dyadic, it

is not possible to directly use a monadic or dyadic identifier as

the argument to another application. To do this it is necessary

to convert the monadic or dyadic identifier into a niladic iden-

tifter by quoting it. For example, the inverse of the dyadic

identifier plus must be written

inverse 'plus'

The formal grammar for this notation is in the appendix.

Figure 1 shows the natural notation adapted to LISP. The

particular vocabulary choices shown are typical. The following

two figures show a program in conventional LISP notation and in

the natural notation. The remaining figures compare other

mathematical and symbolic notations to the natural potation.

3. References

E1] MacLennan, B. J. Observations on the Differences Between

-4



Formulas and Sentences and their Application to Programming

Language Design, SIGPLAN Notices 14A, 7, (July 1979), pp.

Appendix: Grammar for Natural Notation.

senten~e = lause.

clause = term [predicate]

+ phrase, predicate

predicate = infix term [predicate]

+ infix: Clause

phrase simple-phrase

+ phrase, infix simple-phrase

simple-phrase = term [infix simple-phrase]

term = nilad

+ "(" Clause ")"

* prefix term

* 'monad'

+ 'dyad'

- constant

infix = dyad

* "(" Clause "}"

+ prefix infix

prefix monad

+ "(" Clause "]"

-4-



Natural Notation LISP

"X F Y with Z" means B (defun F (X Y Z) B)

- "X F Y" means B (defun F (X Y) B)

"F X" means B (defun F (X) B)
t

C if B, else D (cond (B C) (T D))

"X" means Y, below B (let ((X Y)) B)

first X (car X)

rest X (cdr X)

second X (cadr X)

third X (caddr X)

X with Y (cons X Y)

X is Y (eq X Y)

atom X (atom X)

null X (null X)

number X (numberp X)

X append Y (append X Y)

X search Y (assoc X Y)

Figure 1. Comparison of Natural Notation and LISP
.4

>4

'4 -5

1°



(defun eql (x y)

(or (and (atom x) (atom y) (eq x y))

(and (not (atom x)) (not (atom y))

(eql (car x) (car y))

(eql (edr x) (cdr y)) )) )

Figure 2. Equal Function in LISP

"X equals Y" means:

atom X and atom Y and X is Y, or

not atom X and not atom Y and:

first X equals first Y, and

rest X equals rest Y.

Figure 3. Equal Function in Natural Notation

Isa (John, human).

Gives (John, book, Mary).

Gives (John, book, x) <- Likes (John, x).

Likes (w,x) 4- Gives(w,y,x), Likes(w,y).

Figure 4. Logic Program in Usual Notation

John isa human.

John gives book to Mary.

John gives book to one., if John likes one.

One likes another, if:

one gives gift to another, and one likes gift.

Figure 5. Logic Program in Natural Notation

.3

'F



- ~~ ~~~. . . . . . . . . . .- . -. . . . .

Dot IP a ()(cc X'tranls.

Dot MM z (co cc IP)*(cc d13tl)*[l, trans923

Figure 6. Functional Program in Backus Notation

Inner-product means

transpose then repeat times then reduce-by plus.

* Matrix-multiply means:

first combine second then transpose,

then repeat distribute-left

then repeat repeat inner-product.

Figure 7. Functional Program in Natural Notation

f$R fR:

rightsib z T 1$(IdHjj(+1))

next = umove.total [while( non.dom rightsib, parent); rightsibJ

prey 2 move.total

[while( non.dom rightaib ,parent); rightsib J

remove(L) z L :2 subtree N; excise

skbtree(n) z (m 1 X ints) -*T

4 where m x subnod03 n

reach z (img T) .( X ints)

excise zT :2 T 0> non.subnodes N (T N, N, NT N)

replace(L) z T :a (T N : first L L) /T

Figure 8. Part of Syntax Di~pc*e Editor in Relational Notation



V

"Function map structure" means

function then structure then inverse function.

"Right-sibling" means

inverse tree map identity parallel something plus 1.

"Move-next" means parent do-while non domain right-sibling,

then right-sibling, apply total then move.

"Move-previous" means

parent do-while non domain inverse right-sibling,

then inverse right-sibling, apply total then move.

"Remove-from buffer" means:

buffer becomes subtree of current-node, then excise.

"Subtree a-node" means:

tree if-in the-subnodes combine the-subnodes cross integers,

where the-subnodes means subnodes of a-node.

"Rea(-.' means: something cross integers, then image tree.

"Excise" means tree becomes

tree restrict non subnodes of current-node

combine: current-node apply inverse tree,

connect current-node connect non-term of current-node.

"Replace-from buffer" means tree becomes:

current-node apply inverse tree, maps-to first buffer,

combine buffer, extend tree.

Figure 9. Part of Syntax Directed Editor in Natural Notation

~-8-



{(F.COMPANY): FGFORESTS A F.SIZE>1000)

{(F.COMPANYF.FOREST): FGFORESTS A F.LOC='CALIFORNIA')

f(F.SIZE,F.LOC): FIFORESTS A

STSTREE (T.SPECIES='CEDAR, A T.FOREST = F.FOREST))

{(F.SIZET.TREENUM): FEFORESTS A TSTREE A

T.FOREST = F.FOREST A T.SPECIES 'CEDAR')

Figure 10. Relational Database Retrievals in Conventional

Notation

Company F whenever: F in forests, and size F > 1000.

Company F with forest F, whenever:

F in forests, and location F is "California".

* Size F with location F, whenever: F in forests,

and: T in trees, exists:

species T is "cedar", and forest T is forest F.

Size F with tree-number F, whenever:

F in forests, and T in trees, and

forest T is forest F, and species T is "cedar".

Figure 11. Relational Database Retrievals in Natural Notation

-9--

4-

. - - - , . - - -.- - - - - - -



(defun oval (e a)

(cond

((and (atom e) (numberp e)) e)

((atom e) (assoc e a))

((eq (car e) 'quote) (cadr e))

((eq (car e) 'cond) (evoon (cdr e) a))

CT (apply (car e) (evargs (cdr e) a) a) )

(defun evcon (L a)

(cond

((eval (caar L) a) (oval (cadar L) a))

CT (eveon (cdr L) a)) ))

(defun evargs (x a) (mapcar (bu (rev 'oval) a)x)

(defun apply (f x a)

(cond

((eq f 'car) (car (car x)))

((eq f 'cdr) (cdr (car x)W

((eq f 'atom) (atom (car x)W

((eq f 'null) (null (car x)W

((eq f 'cons) (cons (car x) (cadr W)

((eq f 'eq) (eq (car x) (cadr x)))

(T (let (M (oval f a) ))

(let ((E (mapear 'list (cadr L) x) )

(oval (caddr L) (append LE a))))))

Figure 12. LISP Universal Function in LISP

-10-



"Names evaluate form" means:

form if (atom form and number form), else:

names search form if atom form, else:

second form if first form is "quote", else:

names do-conditional rest form, if first form is "cond", else

names apply first form with names evaluate-list rest form.

"Names do-conditional pairs" means:

names evaluate second first pairs,

if names evaluate first first pairs,

else names do-conditional rest pairs.

"Names evaluate-list forms" means:

nil if null forms, else:

names evaluate first forms,

with names evaluate-list rest forms.

Figure 13. LISP Universal Function in Natural Notation (Part 1)

-I

- 11 -



"Names apply function with actuals" means:

first first actuals if function is "car", else:

rest first actuals if function is "cdr", else:

atom first actuals if function is "atom", else:

null first actuals if function is "null", else:

first actuals with second actuals, if function is "cons", else:

first actuals is second actuals, if function is "eq", else:

names apply-user function with actuals.

"Names apply-user function with actuals" means:

lambda-expression means names evaluate function, below:

bound-variables means second lambda-expression, below:

bound-variables pair-with actuals, append names,

evaluate third lambda-expression.

"Names pair-with values" means:

nil if null names, else:

first names with first values,

with rest names pair-with rest values.

Figure 14. LISP Universal Function in Natural Notation (Part 2)

12

|, . .



S. .. . . . . .. . . . .. .

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
*Cameron Station

Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code 012A

* Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52M1 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Jim Bowery
Viewdata Corp. of Amrica, Inc.
Suite 305
1444 Biscayne Blvd
Miami, FL 33132

Dr. R. B. Grafton
Code 433
Office of Naval Research
800 N. Quincy St.

" Arlington, VA 22217

-13-

.. ,


